skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lin, Ziqian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In-context learning (ICL) exhibits dual operating modes: task learning, i.e., acquiring a new skill from in-context samples, and task retrieval, i.e., locating and activating a relevant pretrained skill. Recent theoretical work proposes various mathematical models to analyze ICL, but they cannot fully explain the duality. In this work, we analyze a generalized probabilistic model for pretraining data, obtaining a quantitative understanding of the two operating modes of ICL. Leveraging our analysis, we provide the first explanation of an unexplained phenomenon observed with real-world large language models (LLMs). Under some settings, the ICL risk initially increases and then decreases with more in-context examples. Our analysis offers a plausible explanation for this "early ascent" phenomenon: a limited number of in-context samples may lead to the retrieval of an incorrect skill, thereby increasing the risk, which will eventually diminish as task learning takes effect with more in-context samples. We also analyze ICL with biased labels, e.g., zero-shot ICL, where in-context examples are assigned random labels, and predict the bounded efficacy of such approaches. We corroborate our analysis and predictions with extensive experiments with Transformers and LLMs. 
    more » « less